Modeling the growth and interaction of multiple dendrites in solidification using a level set method

نویسندگان

  • Lijian Tan
  • Nicholas Zabaras
چکیده

A level set method is presented to study the growth and interaction of multiple dendrites in solidification. The method couples thermal and solute diffusion with propagation of multiple interfaces. A single signed distance function is used to track the solid-liquid interface with the aid of markers, the value of which is the orientation angle, for identification of different crystals. The problem of evolving multiple crystal interfaces is reduced to two tasks: (1) tracking one level set variable (signed distance function) and (2) determination of the marker for a newly solidified finite element nodal point. Tracking a single level set variable is implemented by solving the level set equation with interface velocity computed from an extended Stefan equation using the marker information (crystal orientation). Determination of the marker for a newly solidified finite element nodal point is implemented by using an algorithm modified from the fast marching technique. Both of these two steps are computationally efficient and the approach is suitable for incorporating effects of multiple crystals. Convergence and accuracy of this approach are demonstrated by using different grid spacings and comparing with results obtained from the multi-phase level set method. A parametric study is performed to investigate the effects of solidification speed and thermal gradient on the resulting solidification microstructure pattern. Numerical results of columnar-to-equiaxed transition (CET) qualitatively agree with an analytical estimation and are similar to previous numerical results obtained using a phase field method. A convergence study is performed to determine the appropriate grid spacing for numerical simulation. At lower surface tension, CET occurs at a lower thermal gradient for a giving solidification speed. Secondary dendrite formation is more apparent with lower surface tension. The differences and similarities between the three-dimensional and twodimensional growth results are analyzed. Randomness in crystal orientation and required under-cooling for nucleation are modeled and found to have a great effect on the microstructure pattern. The efficiency of the present approach is finally demonstrated with an example that includes the growth of hundreds of crystals with consideration of randomness effects. Preprint submitted to Elsevier Science 27 April 2007

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INFLUENCE OF THE PRIMARY SOLIDIFICATION ON THE SECONDARY SOLIDIFICATION DURING SEMISOLID METAL (SSM) PROCESSING OF A356.0 ALUMINUM ALLOY BY MECHANICAL STIRRING

  Abstract:   The aims of this research were to investigate the effects of semisolid metal (SSM) processing parameters (i.e., shear rates –times – temperatures combinations) on the primary solidification products and isothermal holding duration, subsequent to cessation of stirring on the secondary solidification of Al-Si (A356) alloy.   The dendrite fragmentation was found to be the governing m...

متن کامل

Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation

In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...

متن کامل

Modeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification

Motion of growing dendrites is a common phenomenon during solidification but often neglected in numerical simulations because of the complicate underlying multiphysics. Here a phase-field model incorporating dendrite-melt two-phase flow is proposed for simulating the dynamically interacted process. The proposed model circumvents complexity to resolve dendritic growth, natural convection and sol...

متن کامل

Phase-field method for computationally efficient modeling of the solidification of binary alloy with magnetic field effect

We present a new 2D phase-field model with anisotropy, applied to the dynamics and structure of free dendrite growth during solidification process of binary alloys under the action of magnetic field. The physics of solidification problem of Ni-Cu alloy such as conditions for crystal growth rate are discussed and show good qualitative agreement with numerical simulations. In order to improve the...

متن کامل

Equiaxed dendritic solidification in supercooled melts

The growth of equiaxed dendrites from a pure supercooled melt is examined. We propose modifications to the classical Ivantsov theory that allow for consideration of multiple interacting dendrites. The modified theory reveals the existence of a steady-state dendritic solidification mode in a frame of reference moving with the dendrite tip. This regime should be valid from the onset of nucleation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 226  شماره 

صفحات  -

تاریخ انتشار 2007